jueves, 29 de marzo de 2012


Las raíces (o ceros) de una función cuadrática, como en toda función, son los valores de x, para los cuales  f(x) = 0 \ . Por tratarse de un polinomio de grado 2, habrá a lo sumo 2 raíces, denotadas habitualmente como: x_1 y x_2, dependiendo del valor del discriminante Δ definido como \Delta = b^2 - 4 a c \  .
  • Dos soluciones reales y diferentes si el discriminante es positivo:
\frac{-b + \sqrt {\Delta}}{2a} \quad\text{y}\quad \frac{-b - \sqrt {\Delta}}{2a}.
  • Una solución real doble si el discriminante es cero:
-\frac{b}{2a} . \,\!
  • Dos números complejos conjugados si el discriminante es negativo:
 \frac{-b}{2a} + i \frac{\sqrt {-\Delta}}{2a}, \quad\text{y}\quad \frac{-b}{2a} - i \frac{\sqrt {-\Delta}}{2a},

[editar]Representación analítica

Existen tres formas principales de escribir una función cuadrática, aplicables según el uso que se le quiera dar a la función: un estudio analítico de la función o de la ecuación cuadrática, una interpretación o construcción geométrica de la parábola, etc. Las tres formas son equivalentes.

[editar]Forma desarrollada

La forma desarrollada de una función cuadrática (o forma estándar) corresponde a la del polinomio de segundo grado, escrito convencionalmente como:
 f(x) = ax^2 + bx + c \,
con a \neq 0.

[editar]Forma factorizada

Toda función cuadrática se puede escribir en forma factorizada en función de sus raíces como:
 f(x) = a(x - x_1)(x - x_2) \,
siendo a el coeficiente principal de la función, y x_1 y x_2 las raíces de f(x). En el caso de que el discriminante Δ sea igual a 0 entonces x_1 = x_2 por lo que la factorización adquiere la forma:
 f(x) = a(x - x_1)^2 \,
En este caso a x_1 se la denomina raíz doble, ya que su orden de multiplicidad es 2.

[editar]Forma canónica

Toda función cuadrática puede ser expresada mediante el cuadrado de un binomio de la siguiente manera:
 f(x) = a (x - h)^2 + k \,
A esta forma de expresión se la llama forma canónica (o reducida). Siendo a el coeficiente principal y el par ordenado (h;k) las coordenadas del vértice de la parábola. Para llegar a esta expresión se parte de la forma polinómica y se realiza el procedimiento llamado completando el cuadrado:
  • Dado:
 f(x) = ax^2 + bx + c \,
  • Se extrae a como factor común en el término cuadrático y en el lineal.
 f(x) = a  \left ( x^2 + \frac{b}{a} x \right ) + c \,
f(x) = a \left (x^2 + \frac{b}{a} x + \frac{b^2}{4 a^2} \right ) + c - \frac{b^2}{4 a}
f(x) = a \left (x + \frac{b}{2a} \right )^2 + c - \frac{b^2}{4a}
  • sustituyendo:
h = \frac{-b}{2a},\ k = c - \frac{b^2}{4a}
  • la expresión queda:
 f(x) = a (x - h)^2 + k \,

No hay comentarios:

Publicar un comentario